Detoxification of Multiple Heavy Metals by a Half-Molecule ABC Transporter, HMT-1, and Coelomocytes of Caenorhabditis elegans

نویسندگان

  • Marc S. Schwartz
  • Joseph L. Benci
  • Devarshi S. Selote
  • Anuj K. Sharma
  • Andy G. Y. Chen
  • Hope Dang
  • Hanna Fares
  • Olena K. Vatamaniuk
چکیده

BACKGROUND Developing methods for protecting organisms in metal-polluted environments is contingent upon our understanding of cellular detoxification mechanisms. In this regard, half-molecule ATP-binding cassette (ABC) transporters of the HMT-1 subfamily are required for cadmium (Cd) detoxification. HMTs have conserved structural architecture that distinguishes them from other ABC transporters and allows the identification of homologs in genomes of different species including humans. We recently discovered that HMT-1 from the simple, unicellular organism, Schizosaccharomyces pombe, SpHMT1, acts independently of phytochelatin synthase (PCS) and detoxifies Cd, but not other heavy metals. Whether HMTs from multicellular organisms confer tolerance only to Cd or also to other heavy metals is not known. METHODOLOGY/PRINCIPAL FINDINGS Using molecular genetics approaches and functional in vivo assays we showed that HMT-1 from a multicellular organism, Caenorhabditis elegans, functions distinctly from its S. pombe counterpart in that in addition to Cd it confers tolerance to arsenic (As) and copper (Cu) while acting independently of pcs-1. Further investigation of hmt-1 and pcs-1 revealed that these genes are expressed in different cell types, supporting the notion that hmt-1 and pcs-1 operate in distinct detoxification pathways. Interestingly, pcs-1 and hmt-1 are co-expressed in highly endocytic C. elegans cells with unknown function, the coelomocytes. By analyzing heavy metal and oxidative stress sensitivities of the coelomocyte-deficient C. elegans strain we discovered that coelomocytes are essential mainly for detoxification of heavy metals, but not of oxidative stress, a by-product of heavy metal toxicity. CONCLUSIONS/SIGNIFICANCE We established that HMT-1 from the multicellular organism confers tolerance to multiple heavy metals and is expressed in liver-like cells, the coelomocytes, as well as head neurons and intestinal cells, which are cell types that are affected by heavy metal poisoning in humans. We also showed that coelomocytes are involved in detoxification of heavy metals. Therefore, the HMT-1-dependent detoxification pathway and coelomocytes of C. elegans emerge as novel models for studies of heavy metal-promoted diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The N-Terminal Extension Domain of the C. elegans Half-Molecule ABC Transporter, HMT-1, Is Required for Protein-Protein Interactions and Function

BACKGROUND Members of the HMT-1 (heavy metal tolerance factor 1) subfamily of the ATP-binding cassette (ABC) transporter superfamily detoxify heavy metals and have unique topology: they are half-molecule ABC transporters that, in addition to a single transmembrane domain (TMD1) and a single nucleotide-binding domain (NBD1), possess a hydrophobic NH2-terminal extension (NTE). These structural fe...

متن کامل

Drosophila ABC transporter, DmHMT-1, confers tolerance to cadmium. DmHMT-1 and its yeast homolog, SpHMT-1, are not essential for vacuolar phytochelatin sequestration.

Half-molecule ATP-binding cassette transporters of the HMT-1 (heavy metal tolerance factor 1) subfamily are required for Cd2+ tolerance in Schizosaccharomyces pombe, Caenorhabditis elegans, and Chlamydomonas reinhardtii. Based on studies of S. pombe, it has been proposed that SpHMT-1 transports heavy metal.phytochelatin (PC) complexes into the vacuolysosomal compartment. PCs are glutathione der...

متن کامل

Detoxification and sensing mechanisms are of similar importance for Cd resistance in Caenorhabditis elegans

The present study employed mass spectrometry (ICP-MS) to measure the internal cadmium concentrations (Cdint) in Caenorhabditis elegans to determine Cd uptake from a Cd-containing environment as well as Cd release under Cd-free conditions. To analyze the functional role of several ATP binding cassette (ABC) transporters (e.g., HMT-1 and MRP-1) and phytochelatin synthase (PCS), we compared wild-t...

متن کامل

A new pathway for heavy metal detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in Caenorhabditis elegans.

Increasing emissions of heavy metals such as cadmium, mercury, and arsenic into the environment pose an acute problem for all organisms. Considerations of the biochemical basis of heavy metal detoxification in animals have focused exclusively on two classes of peptides, the thiol tripeptide, glutathione (GSH, gamma-Glu-Cys-Gly), and a diverse family of cysteine-rich low molecular weight protein...

متن کامل

C. elegans pgp-5 IS INVOLVED IN RESISTANCE TO BACTERIAL INFECTION AND HEAVY METAL AND ITS REGULATION REQUIRES TIR-1 AND A p38 MAP KINASE CASCADE

Animals and plants respond to bacterial infections and environmental stresses by inducing overlapping repertoires of defense genes. How the signals associated with infection and abiotic stresses are differentially integrated within a whole organism remains to be fully addressed. We show that the transcription of a C. elegans ABC transporter, pgp-5 is induced by both bacterial infection and heav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010